An Algorithm for the Retrieval of Aerosol Optical Depth from Geostationary Satellite Data in Thailand
نویسنده
چکیده
An algorithm was developed to estimate aerosol optical depth (AOD) from geostationary satellite data. The 6S radiative transfer computer code was employed to generate a look-up table (LUT) which incorporates several combinations of satellite-derived variables including earthatmospheric reflectivity, atmospheric reflectivity and surface albedo. The parameterization of the satellite-derived atmospheric reflectivity accounted for the scattering of solar radiation by clouds, absorption of solar radiation by water vapour, ozone and gases and solar radiation depletion by aerosols. The digital data of the MTSAT-1R satellite were used as the main input of the algorithm. For the validation, the values of AOD derived from this algorithm were compared with those obtained from four sites of Aerosol Robotic Network (AERONET) in Thailand, and a reasonable agreement was found.
منابع مشابه
ارائه روشی سریع برای حذف اثر هوآویزها از تصاویر ماهوارهای MODIS
Due to the effect of aerosols present in the atmosphere on the satellite images, the study of the effect of local aerosols distribution on the satellite images is important. On the other hand, the study shows that the effect of aerosols on the greenhouse gases and consequently on climate is also undeniable and as a result, this puts more emphasize on the necessity of this study. Lack of informa...
متن کاملAerosol Optical Depth Retrieval over Land Using Meteosat-8 Seviri Data
Geostationary sensors bear the potential to derive and analyze daily and seasonal trends of aerosol optical depth (AOD) from spatially homogeneous data. However, to date most AOD retrieval algorithms from geostationary sensors are limited to sea surfaces. In this study, a multi-temporal technique to retrieve AOD over land from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board...
متن کاملDust Detection and Optical Depth Retrieval Using MSG SEVIRI Data
Thanks to its observational frequency of 15 min, the Meteosat Second Generation (MSG) geostationary satellite offers a great potential to monitor dust storms. To explore this potential, an algorithm for the detection and the retrieval of dust aerosol optical properties has been tested. This is a multispectral algorithm based on visible and infrared data which has been applied to 15 case studies...
متن کاملA numerical testbed for remote sensing of aerosols, and itsdemonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R
We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) su...
متن کاملMonitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites
The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbitin...
متن کامل